June 17, 2024
The Cost of Decommissioning Wind Turbines is Huge
Expensive to decommission wind turbines and who pays when the funds are not sufficient to cover the expense is an issue.
Expensive to decommission wind turbines and who pays when the funds are not sufficient to cover the expense is an issue.

In Minnesota, Xcel Energy estimates conservatively that it will cost $532,000 (in 2019 dollars) to decommission each of its wind turbines—a total cost of $71 million to decommission the 134 turbines in operation at its Noble facility. Decommissioning the Palmer’s Creek Wind facility in Chippewa County, Minnesota, is estimated to cost $7,385,822 for decommissioning the 18 wind turbines operating at that site, for a cost of $410,000 per turbine.

Restoration activities include the removal of all physical material and equipment related to the project to a depth of 48 inches. Most of the concrete foundations used to anchor the wind turbines, however, are as deep as 15 feet. The concrete bases are hard to fully remove, and the rotor blades contain glass and carbon fibers that give off dust and toxic gases. While most (90 percent) of a turbine can be recycled or be sold to a wind farm in Asia or Africa, researchers estimate the United States will have more than 720,000 tons of blade material to dispose of over the next 20 years, a figure that does not include newer, taller higher-capacity wind turbines.

Decommissioning Blades

Wind turbine blades are made of a tough but pliable mix of resin and fiberglass—similar to what spaceship parts are made from. Decommissioned blades are difficult and expensive to transport. They can be anywhere from 100 to 300 feet long and must be cut up on-site before getting trucked away on specialized equipment to a landfill that may not have the capacity for the blades. Landfills that do have the capacity may not have equipment large enough to crush them. One such landfill cuts the blades into three pieces and stuffs the two smaller sections into the third, which is cheaper than renting stronger crushing machines.

One company has found a way to recycle blades by grinding them up to make small pellets that can be used for decking materials, pallets and piping. The company opened its first processing facility in central Texas this year and is leasing a second space near Des Moines, Iowa. Given that the United States now has almost 100 gigawatts of wind capacity and that the life span of wind power is generally 20 years—much less than the traditional capacity it is replacing—finding technologies for recycling of the parts is becoming extremely important. (This shorter lifespan of this capital investment also means the replacement power needs to be recapitalized 2 to 3 times compared to power from conventional generation technologies, a little-discussed economic burden facing consumers in the future.)

[…]

Loading